Journal of Organometallic Chemistry, 157 (1978) 311-319 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE COORDINATIVE PROPERTIES OF BIFUNCTIONAL ARSENIC LIGANDS IN CARBONYLVANADIUM COMPOUNDS

WOLFGANG R.W. ROOSE, DIETER REHDER *, HARALD LÜDERS and KLAUS H. THEOPOLD

Institut für Anorganische und Angewandte Chemie der Universität, Martin-Luther-King-Platz, D-2000 Hamburg 13 (F.R.G.)

(Received March 7th, 1978)

Summary

The complexes $cis [\eta^{5}-CpV(CO)_{2}\widehat{LL}]$ ($\widehat{LL} = Ph_{2}AsCH_{2}CH_{2}AsPh_{2}$ (dpase), Ph_2AsCH_2CH_2PPh_2 (arphos), and o-phenylenebis(dimethylarsine) (diars)) were isolated from the photo-induced reaction between $\eta^{5}-CpV(CO)_{4}$ and the corresponding ligand. With [Et₄N][V(CO)₆], the monosubstitution products [Et₄N]₂-[{V(CO)₅}₂(μ - \widehat{LL})] (\widehat{LL} = dpase, arphos) are initially obtained. Further irradiation results in the formation of cis-[Et₄N][V(CO)₄(arphos)] or a mixture of cis-[Et₄N][V(CO)₄(dpase)] and cis-[Et₄N]₂[{V(CO)₄}₂(μ -dpase)₂], respectively. The complexes have been investigated by IR and ⁵¹V NMR spectroscopy. Mass spectral data are presented for the neutral complexes.

Introduction

Recently, we published findings on the photo-induced reaction between ditertary phosphines $Ph_2P(CH_2)_nPPh_2$ (\overrightarrow{PP} , n = 0-4) and $[Et_4N][V(CO)_6]$ or η^5 -CpV(CO)₄, respectively, showing that disubstitution usually (n = 1-4) yields the monometallic species *cis*-[Et₄N][V(CO)₄ \overrightarrow{PP}] and *cis*-[η^5 -CpV(CO)₂ \overrightarrow{PP}] in which the bis-phosphines act as chelating ligands [1]. If n = 0, however, bridging structures are favoured [2]. Bridging structures were also reported for the tritertiary phosphine MeC(CH₂PPh₂)₃ [3], whereas the potentially triligate PhP(CH₂CH₂-PPh₂)₂ exclusively forms chelate complexes [4], and the tetratertiary (CH₂-PPhCH₂CH₂PPh₂)₂ acts as a bridging and as a chelating ligand [1]. Whether chelated or bridged structures are preferred may depend on (i) the donor/acceptor ability of the coordinating functions, (ii) the bulkiness of the ligating groups, and (iii) the extent of ring strains and angle distortions in the cyclic system. In the light of these considerations, we discuss here the coordinative properties of 1,2bis(diphenylarsino)ethane (dpase), 1-diphenylarsino-2-diphenylphosphinoethane (arphos) and o-phenylenebis(dimethylarsine) (diars) towards [Et₄N][V(CO)₆] and η^5 -CpV(CO)₄. Considerable use has been made of IR and ⁵¹V NMR spectroscopic data, including those for the known arsinecarbonylvanadium complexes *cis*-[Et₄N][V(CO)₄(diars)] [5], [Et₄N][V(CO)₅AsPh₃] [6,7] and η^5 -CpV(CO)₃-AsPh₃ [7], and the bis-arsine and arsinophosphine derivatives of the isoelectronic Group VI hexacarbonyls [8–10].

Experimental

General method and materials

The general procedure for the preparation of carbonylvanadium derivatives is described elsewhere [1]. Two slightly differing irradiation types of apparatus (Mangels, Bonn) were employed in this work. For monosubstitution, the reaction mixture was magnetically circulated using a teflon rotary pump. Where disubstitution products were envisaged, the solution was agitated by passing a nitrogen stream through a filter plate at the bottom of the reaction vessel. Because of the oxygen sensitivity of the reaction products, all operations were carried out under nitrogen and in anhydrous solvents. Starting materials were obtained from commercial sources (Alfa, Strem) and purified by sublimation (CpV(CO)₄), recrystallization (arphos, dpase; from ethanol) or redistillation (diars). [Na(diglyme)₂][V(CO)₆] was converted into [Et₄N][V(CO)₆] [1], and *cis*-[Et₄N][V(CO)₄diars] was prepared by a published method [5].

Spectroscopic measurements

IR: ca. 0.02 M THF or CH₃CN solutions in 0.1 mm KBr cuvettes; Perkin-Elmer spectrometer 337; absolute error ±1 to ±3 cm⁻¹. ⁵¹V NMR: ca. 0.2 M THF or CH₃CN solutions in rotating 7.5 mm diameter vials; 23.66 MHz, Bruker WH 90 PFT spectrometer, external lock CDCl₃, standard VOCl₃/ CDCl₃ 2/1; absolute error less than 1 ppm. {¹H}³¹P NMR: ca. 0.2 M THF/ CH₃CN (1/1) in rotating 5 mm diameter vials; 36.44 MHz, Bruker WH 90 PFT spectrometer, external standard H₃PO₄/D₂O 80%. Mass spectra: Varian MAT 112 mass spectrometer; ionization energy 72 eV.

Analytical data and properties of the complexes are collected in Table 1, mass spectra for $cis [\eta^{5}-CpV(CO)_{2}\widehat{LL}]$ (\widehat{LL} = arphos, dpase and diars) are shown in Table 2.

Bis(tetraethylammonium) decacarbonyl- μ -(1,1,4,4-tetraphenyl-1-arsa-4-phosphabutane)divanadate(--I), [Et₄N]₂[{V(CO)₅}₂(μ -Ph₂AsCH₂CH₂PPh₂)] (I) and cis-tetraethylammonium tetracarbonyl(1,1,4,4-tetraphenyl-1-arsa-4-phosphabutane)vanadate(--I), cis-[Et₄N]/V(CO)₄(Ph₂AsCH₂CH₂PPh₂)] (II)

A solution of 1.04 g (2.98 mmol) $[Et_4N][V(CO)_6]$ and 1.32 g (2.98 mmol) arpnos in 100 ml THF was irradiated for 90 min and allowed to stand over-night at room temperature. Dark-red crystals of II were then filtered off, washed twice with 10 ml portions of heptane, and dried under high vacuum. Yield 0.90 g (41%).

The filtrate, containing I and residual amounts of II, was concentrated to 20 ml and transferred to a Duran vessel of appropriate capacity. After addition of 2 ml of freshly distilled allyl chloride saturated with N_2 , the solution was irradiated for 10 min, using a UV-high pressure mercury lamp (Hanau) placed

312

TABLE 1

ANALYTICAL DATA AND PROPERTIES

ł

		Empirical	Molecular	Analysis (for	ind (calcd.) (%))				
	×	TOTINULA	2900	0	H	As	z	ď	>
-	Yellow	C52H64AsN2010V2	1084.87	56.3	5,8	6,4	2.5	2.9	9,6
	powder			(52,57)	(5.95)	(6.91)	(2.58)	(2.86)	(9.39)
11	Dark-red	C _{3k} H ₄₄ AsNO ₄ PV	735.61	61.6	6.1	10.3	2.0	4.2	7.0
	crystals			(62.05)	(6.03)	(10.19)	(06.1)	(4.21)	(6.93)
p III	Yellow	(C ₂₆ H ₃₂ AsNO ₅ V) ₂	1128,82	53.1	6.1	10.7	3.0	1	10.1
	crystals			(53.63)	(5.73)	(10.14)	(2.84)	I	(10.34)
IV b	Orange-red	C ₃₈ H ₄₄ As ₂ NO ₄ V	779.56	58.5	5.8	1	1.9	1	6.5
	powder			(58.55)	(5,69)		(1.80)	ł	(6.54)
^	Red-brown	C ₃₃ H ₂₀ AsO ₂ PV	614.43	64.5	4.7	11.6	ı	6.1	8.5
	powder	ì		(64.51)	(4.76)	(12.19)	1	(5.04)	(8.29)
Ν	Dark-brown	C33H29As202V	658.33	59.4	4.5	1	1	I	7.5
	powder			(60.20)	(4.44)		1	I	(7.74)
IIV	Cocoa-brown	C17H21A5202V	458.14	44.6	4.6	1	1	I	11.4
	powder			(44.57)	(4.62)		1	i	(11.12)
		n tan 22 kung min a tamin kan bangkan digan tahun ta sang sa manan kan di sa sa sa sa sa sa s	and the other states and the second states of the s						

^a Analytical data given for the 1/1 adduct III • [Et₄N][V(CO)₆].^b The empirical formula and molecular mass are given for the monometallic species IVa.

.

TABLE 2

MASS SPECTRA OF cis- $[\eta^5$ -CpV(CO)₂LL] (LL = arphos, dpase, diars), IONIZATION ENERGY 72 eV

Ion ¹⁺	CpV(C()) ₂ arphos	CpV(C	0)2dpase	CpV(C	D)2diars	
	I (%) ^a	m/e	I (%)	m/e	I (%)	m/e	
M (parent ion)	1.3	614	0.4	658	4.1	458	
M minus 2 CO	12.8	558	1.2	602	5.5	402	
$\mathbf{L}_{\mathbf{r}}$ is the second s	83.3	442	7.0	486	13.7	286	
L minus C ₂ H ₄	11.5	414	8.2	458		-	
L minus CH ₃					100.0	271	
L minus 2 CH ₃					47.9	256	
L minus 3 CH ₃					6.9	241	
L minus 4 CH ₃					6.9	226	
L minus 2 Ph	53.9	288					
L minus 4 Ph	3.9	134	2.2	178			
CpVAsPh ₂	6.4	345	0.7	345			
CpVPPh2	7.7	301					
CpVAsPh	5.1	268					
AsPh ₃			2.8	306			
PPh3	93.6	262					
AsPa ₂	30.8	229	100.0	229			
PPh ₂	55.1	185	÷				
As ₂ Ph	50.0	227	26.8	227			
AsPPh	100.0	183					
AsPh	38.5	152	28.7	152			
PPh	18.0	108					
AsC _ố H₄	0.6	151	14.7	151	20.6	151	
Cp ₂ V	11.5	181	6.3	181			
CpV	0.7	116	9.8	116	4.1	116	
Ср	0.7	65	1.1	65	12.5	65	
V	18.0	51	2.8	51	6.9	51	

^a Relative intensity (100% = $C_6H_5AsP^+$ (CpV(CO)₂arphos), $C_{12}H_{10}As^+$ (CpV(CO)₂dpase), $C_8H_{10}As_2^+$ (CpV(CO)₂diars)).

about 5 cm outside the Duran tube. The reaction mixture (consisting of I, which does not react with allyl chloride, and η^3 -C₃H₅V(CO)₃arphos [12]) was precipitated with n-heptane, filtered off, washed with 2 ml of THF followed by three 10 ml portions of diethyl ether, and the yellow complex I remaining on the filter plate was dried under high vacuum. Yield 0.27 g (17%).

Bis(tetraethylammonium) decacarbonyl- μ -(1,1,4,4-tetraphenyl-1,4-diarsabutane)divanadate(--I), [Et₄N]₂[{V(CO)₅}₂(μ -Ph₂AsCH₂CH₂AsPh₂)] (III)

A solution of 1.14 g (3.26 mmol) $[Et_4N][V(CO)_6]$ and 1.62 g (3.33 mmol) dpase in 100 ml THF was irradiated for one hour and the solution evaporated to 10 ml. On addition of 30 ml heptane, a sticky red-brown product was obtained which, after decantation of the supernatant liquid, was stirred with 10 ml THF for one hour. Yellow, crystalline III which separated out was filtered off, washed with 1 ml THF and with two 5 ml portions of heptane. From the filtrate, an equal amount of III was precipitated with heptane. Total yield 1.03 g (56%). The analysis (Table 1) and spectra (Table 3) indicate that III is actually a 1/1 adduct with $[Et_4N][V(CO)_6]$; recrystallization and variation of preparative conditions do not effect the composition. cis-Tetraethylammonium tetracarbonyl(1,1,4,4-tetraphenyl-1,4-diarsabutane)vanadate(-I), cis-[Et₄N][V(CO)₄(Ph₂AsCH₂CH₂AsPh₂)] (IVa) and cis-bis(tetraethylammonium) octacarbonyl- μ -(1,1,4,4-tetraphenyl-1,4-diarsabutane)divanadate (-I), cis-[Et₄N]₂[{V(CO)₄}₂(μ -Ph₂AsCH₂CH₂AsPh₂)₂] (IVb)

0.94 g (2.69 mmol) $[Et_4N][V(CO)_6]$ and 1.25 g (2.57 mmol) dpase dissolved in 100 ml THF where irradiated for 6 h, while a weak N₂-stream was bubbled through the solution. The dark-red solution was treated with n-heptane until precipitation of IV was complete (ca. 80 ml). The orange-red powder (consisting of a mixture of IVa and IVb) was filtered off, recrystallized from 5 ml acetonitrile, and dried under high vacuum. Yield 0.27 g (14%).

cis-Dicarbonyl- η^{5} -cyclopentadienyl(1,1,4,4-tetraphenyl-1-arsa-4-phosphabutane)vanadium(+I), cis-[η^{5} -CpV(CO)₂(Ph₂AsCH₂CH₂PPh₂)] (V)

A solution of 0.48 g (2.11 mmol) $CpV(CO)_4$ and 0.98 g (2.22 mmol) arphos dissolved in 100 ml THF was irradiated for 30 min, with a weak N₂-stream passing through the solution. After evaporation to 20 ml, V was precipitated by addition of 50 ml heptane, filtered off, washed with three 10 ml portions of heptane, and dried under high vacuum. Yield 0.83 g (64%).

cis-Dicarbonyl- η^{5} -cyclopentadienyl(1,1,4,4-tetraphenyl-1,4-diarsabutane)vanadium(+1), cis- $[\eta^{5}$ -CpV(CO)₂(Ph₂AsCH₂CH₂AsPh₂)] (VI)

Preparation and isolation of VI was carried out as described for V. Reactants: 2.71 g (5.57 mmol) dpase and 1.26 g (5.52 mmol) $CpV(CO)_4$; irradiation time 95 min. Yield 2.12 g (58%).

cis-Dicarbonyl- η^{5} -cyclopentadienyl[o-phenylenebis(dimethylarsine)]vanadium(+I), cis- $[\eta^{5}$ -CpV(CO)₂ {o-C₆H₄(AsMe₂)₂ }] (VII)

A solution of 1.72 g (7.54 mmol) $CpV(CO)_4$ and 2.0 ml (ca. 7 mmol) diars in 100 ml THF was irradiated for 3 h, the solution concentrated to 10 ml, and VII precipitated by treatment with 80 ml of heptane. Yield 3.29 g (95%).

Results and discussion

IR and NMR spectroscopic data are listed in Table 3. Structural assignments were based on data for ditertiary phosphine complexes [1].

CO-Substitution in $[Et_4N][V(CO)_6]$

Monosubstitution. Photo-induced substitution of carbon monoxide in $[V(CO)_6]^$ with ditertiary phosphines \widehat{PP} initially yields the monosubstituted, monometallic species $[V(CO)_5\widehat{PP}]^-$ [1]. Simultaneously, the *cis*-disubstituted product is formed, which can, however, be removed by conversion to the hydrido complex on silica gel [11] or by reaction with allyl chloride [12]. A different reaction takes place when THF solutions containing $[Et_4N][V(CO)_6]$ and arphos or dpase in about equimolar amounts are irradiated. The ligands adapt a bridging function to form monoligate bimetallic complexes $[Et_4N]_2[\{V(CO)_5\}_2(\mu-arphos)]$ (I) and $[Et_4N]_2[\{V(CO)_5\}_2(\mu-dpase)]$ (III). Although disubstitution does not occur readily with these compounds, the reaction mixture from $[Et_4N][V(CO)_6]$ and arphos contains considerable amounts of disubstitution product after compara-

	ν(C≡O) (cπ	۵ (۱–۱				δ(⁵¹ V) (ppm) ^b	
	A1(2)	(1) ¹ V	ы		·		
[Et4N][V(CO)5Ph12Et] ^c	1964	1858	1821			-1842 (D, 226)	
[EtqN]2[{V(CO) ₅ / ₂ (μ-arphos)] {] [EtdN]2[{V(CO) ₅ / ₂ (μ-dpase)] {]]) ^d	1965	1850(sh) 1858	1815			-1823;	
[Et ₄ N][V(CO) ₅ AsPh ₃] [7]	1961	1827	1859	-			
	A1 ⁽²⁾	(1) ¹ V	B1	B2			
cis-[Et,1N][V(CO)4dppe] [1]	1903	1799	1780	1747		-1790 (1, 230)	
cis-[Et4N][V(CO)4arphos] (II)	0061	1795	1783	1750	-	-1772 (D. 220)	
cie-[Et4N][V(CO)4diars]	1001	1671	1777	1743		-1750	
cis-[Et4N][V(CO)4dpase] (IVa) cis-[Et4N]2[{V(CO)4}2(µ-dpase)2] (IVb)	1805	1792(sh)	1780	1755		1754 1781	
	A'	Λ"					
<i>cle</i> -[¹ 7 ⁵ -CpV(CO) ₂ dppe] [1]	1870	1799				-1120 /	
cis-[17CPV(CO)2arpnos] (V) cis-[75-CpV(CO)2diars] (VII)	1865	1794				1030	
cis-[ŋ5-CpV(CO)2dpase] (VI)	1870	1800				937	

1,61

ار <mark>ا</mark>

NOUXE ę ı, TABLE 3

• . • .

316 6

•; :

lively short irradiation times. From this mixture, I is isolated after elimination of the disubstituted species by subsequent irradiation in the presence of $C_{A}H_{A}CH_{A}$

It and ⁵¹V NMR spectra of I and III are in accord with the local C_{40} symmetry of the $[V(CO)_3]$ moleties (cf. Table 3). The ⁵¹V NMR spectrum of I shows two signals for vanadium bonded via phosphorus and arsenic, respectively. The lower field shift value is assigned to the $\{V(CO)_5\}$ molety bonded to the AsPh₂ site, which exhibits lower ligand strength than the PPh₂ group [7,13] (see also Fig. 1). In the ⁴¹P NMR spectrum no signal corresponding to uncoordinated PPh₂ is observed supporting the proposed structure.

field NMR signal must be assigned to IVb. However, this conclusion while likely, is not definite.

CO-Substitution in η^{5} -CpV(CO)₄

With $CpV(CO)_{4}$, the ligands arphos, dpase and diars rapidly react to the monometallic monoligate complexes $cis [\eta^5 - CpV(CO)_2 arphos]$ (V), $cis [\eta^5 - CpV(CO)_2 - dpase]$ (VI), and $cis [\eta^5 - CpV(CO)_2 diars]$ (VII), thus paralleling the course of reaction between $CpV(CO)_4$ and $Ph_2P(CH_2)_nPPh_2$ (n = 1,2,4) [1]. The compounds are isolated by precipitation with n-heptane after approximately 1 h of irradiation. IR and ⁵¹V NMR spectra (Table 3) are consistent with the proposed formulation. The ³¹P NMR spectrum of V shows a relatively broad signal (half-width 165 Hz) at +117 ppm, characteristic of phosphorus coordinated to vanadium.

Conclusion

⁵¹V NMR shifts $\delta(V)$ can be employed to arrange ligands according to their strength (σ -donor and π -acceptor ability) with respect to their position in the spectrochemical series [13]. Thus, $|\delta(V)|$ is proportional to ligand strength, where $|\delta(\mathbf{V})|$ values are understood to parallel shielding of the ⁵¹V nucleus. This relation holds under the restriction that variations of $\delta(\mathbf{V})$ are dominated by variations in the paramagnetic term of the overall shielding, and that increasing ligand strength is reflected by increasing ligand field splitting. On this view, the diamagnetic term, covalency of the vanadium-ligand bond and nephelauxetic effects impart constant contributions throughout our series of similar ligands. In terms of this simplified concept, the ligands arohos, dpase and diars may be arranged within a series of increasing ligand strength according to AsPh₃ \approx dpase \approx arphos(As) < diars < arphos(As,P) < arphos(P) \approx dppe \approx PEtPh₂ (for $\delta(V)$ values see Table 3). Basically, the arsenic ligands are weaker than the ligands coordinated via phosphorus functions, while among the ditertiary phosphines, the dimethylarsenic group is distinctly stronger than the AsPh₂ group. The relatively weak donor-acceptor ability of arphos and dpase along with steric factors may explain the lower reaction rate for disubstitution as compared to diars or dppe, and hence the tendency to form binuclear complexes on substituting CO in the $[V(CO)_6]^-$ anion. This tendency is more pronounced for dpase. No bridging structures are, however, formed from $CpV(CO)_4$ in prolonged reaction.

The disubstituted anionic complexes exhibit a structural similarity to the products obtained from the reaction between $M(CO)_6$ (M = Cr, Mo, W) and arphos or dpase, in that monometallic and bimetallic species of the general composition $M(CO)_4$ dpase, $M(CO)_2$ (dpase)₂ and $M_2(CO)_6$ (dpase)₃ (M = Mo, W) are formed [8]. The analogy is still more striking with the arphos complexes $M_2(CO)_8$ (arphos)₂ [10]. However, no bridging structures for monosubstitution were described. Monosubstitution with arphos yielded Cr(CO)₅ arphos; the ligand appears to be bonded through phosphorus [9].

Acknowledgement

We acknowledge support of this work by the Deutsche Forschungsgemeinschaft.

References

- 1 D. Rehder, L. Dahlenburg and I. Müller, J. Organometal. Chem., 122 (1976) 53.
- 2 D. Rehder, J. Organometal. Chem., 137 (1977) C25.
- 3 H. Behrens and H. Brandl, Z. Naturforsch. B, 22 (1967) 1353.
- 4 I. Müller and D. Rehder, J. Organometal. Chem., 139 (1977) 293.
- 5 J.E. Ellis and R.A. Faltynek, J. Organometal. Chem., 93 (1975) 205.
- 6 A. Davison and J.E. Ellis, J. Organometal. Chem., 31 (1971) 239.
- 7 R. Talay and D. Rehder, Chem. Ber., 111 (1978) 1978.
- 8 F. Zingales, F. Canziani and R. Ugo, Gaz. Chim. Ital., 92 (1962) 761.
- 9 J.A. Connor, J.P. Day, E.M. Jones and G.E. McEwen, J. Chem. Soc. Dalton Trans., (1973) 347.
- 10 S.C. Tripathi, S.C. Srivastava and A.K. Shrimal, J. Organometal. Chem., 73 (1974) 343.
- 11 U. Puttfarcken and D. Rehder, J. Organometal. Chem., 157 (1978) 321.
- 12 U. Francke and E. Weiss, J. Organometal. Chem., 121 (1976) 355.
- 13 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333; D. Rehder, W.L. Dorn and J. Schmidt, Trans. Met. Chem., 1 (1976) 74.
- 14 F.A. Cotton, Inorg. Chem., 3 (1964) 702.